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Abstract

To interpret uncertainty estimates from differen-
tiable probabilistic models, [1] proposed gener-
ating a single Counterfactual Latent Uncertainty
Explanation (CLUE) for a given data point where
the model is uncertain. [2] formulated δ-CLUE,
the set of CLUEs within a δ ball of the orig-
inal input in latent space – however, we find
that many CLUEs generated by this method are
very similar, hence redundant. We propose DI-
Verse CLUEs (∇-CLUEs), a set of CLUEs which
each provide a distinct explanation. We further
introduce GLobal AMortised CLUEs (GLAM-
CLUEs), which represent amortised mappings
that apply to specific groups of uncertain inputs,
taking them and efficiently transforming them in
a single function call into inputs that a model will
be certain about. Our experiments show that ∇-
CLUEs and GLAM-CLUEs both address short-
comings of CLUE and provide beneficial expla-
nations of uncertainty estimates to practitioners.

Introduction

[1] proposes a method for finding an explanation of
a model’s predictive uncertainty of a given input by
searching in the latent space of an auxiliary deep
generative model (DGM), identifying a single possi-
ble change to the input such that the model becomes
more certain in its prediction. This is termed CLUE
(Counterfactual Latent Uncertainty Explanation).
However, there are limitations to CLUE, including
the lack of a framework to deal with a potential di-
verse set of plausible explanations, despite propos-
ing methods to generate them. CLUE introduces a
latent variable DGM with decoder µθ(x|z) and en-
coder µφ(z|x). H refers to any differentiable uncer-
tainty estimate of a prediction y. CLUE minimises:
L(z) = H (y|µθ(x|z))+d (µθ(x|z),x0) to yield xCLUE =
µθ (x|zCLUE) where zCLUE = argminzL(z). We pro-
pose ∇-CLUE and GLAM-CLUE, full details of
which can be found in the paper.

Figure 1: Conceptual colour map of objective function L(z) with z0 located in high cost region. White circles indicate explanations
found. Left: Gradient descent to region of low cost [1]. Training points in colour. Left Centre: Gradient descent constrained to δ-ball
[2]. Diverse starting points yield diverse local minima, albeit with many redundant solutions. Right Centre: Direct optimisation for
diversity (∇-CLUE). Right: Efficient mappings without gradient descent (GLAM-CLUE).

DIVerse CLUE

δ-CLUE [2] introduces a method for generating a set
of CLUEs by restricting the search in latent space
to a ball of radius δ. However, many CLUEs found
therein are redundant. We introduce metricsD (Ta-
ble 1) to measure the diversity in sets of CLUEs such
that we can optimise for it directly: we term this
DIVerse CLUE (∇-CLUE). By optimising simulta-
neously over k counterfactuals, we minimise (note
that we apply the function D in latent space here):
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Table 1: Diversity metrics D with arbitrary distance metric d.
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where L(zi) = H (y|µθ(x|zi)) + d (µθ(x|zi),x0) ,

to yield XCLUE = µθ (X|ZCLUE)

where ZCLUE = argmin
z1,...,zk

= L(z1, ..., zk).

Figure 2: Effect of λD on diversity. DPP, APD and Coverage
metrics applied to the set of k = 10 ∇-CLUEs.

Figure 3: Comparison of explanations for an uncertain input (left) by the baselines, GLAM-CLUE, and CLUE. H is uncertainty, d is
input space distance, ρ is latent space distance. Low H in baselines have unrealistically high d from the original.

GLobal AMortised CLUE

We desire a computationally efficient method that
only requires a finite portion of the dataset from
which we learn global properties of uncertainty; we
propose GLobal AMortised CLUE (GLAM-CLUE),
a method that achieves this with considerable speed-

Figure 4: GLAM-CLUE vs baselines
when mapping uncertain 7s to certain
7s in MNIST. Total costs H + λxd.

ups. High certainty
points are taken
from the training
data to learn such
mappings (we call
this GLAM 1), but
we demonstrate im-
provements by in-
stead using CLUEs
generated from un-
certain points in
the training data

(GLAM 2). At inference time, GLAM-CLUE per-
forms significantly faster than CLUE by average
CPU time (Table 2). We show that ∇-CLUE and
GLAM-CLUE address the shortcomings of CLUE.

Input DBM Latent DBM Input NN
0.0306 0.0262 0.0236

Latent NN GLAM-CLUE CLUE
0.0245 0.0238 4.68

Table 2: Average CPU time in seconds to compute one
MNIST counterfactual explanation.
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