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Abstract
To interpret uncertainty estimates from differentiable prob-
abilistic models, recent work has proposed generating
a single Counterfactual Latent Uncertainty Explanation
(CLUE) for a given data point where the model is uncer-
tain, identifying a single, on-manifold change to the input
such that the model becomes more certain in its prediction.
We broaden the exploration to examine δ-CLUE, the set
of potential CLUEs within a δ ball of the original input
in latent space. We study the diversity of such sets and
find that many CLUEs are redundant; as such, we propose
DIVerse CLUE (∇-CLUE), a set of CLUEs which each pro-
pose a distinct explanation as to how one can decrease the
uncertainty associated with an input. We then further pro-
pose GLobal AMortised CLUE (GLAM-CLUE), a distinct
and novel method which learns amortised mappings on spe-
cific groups of uncertain inputs, taking them and efficiently
transforming them in a single function call into inputs for
which a model will be certain. Our experiments show that
δ-CLUE, ∇-CLUE, and GLAM-CLUE all address short-
comings of CLUE and provide beneficial explanations of
uncertainty estimates to practitioners.

Introduction

Recent work [1] proposes CLUE (Counterfactual La-
tent Uncertainty Explanations), a method for find-
ing an explanation of a model’s predictive uncer-
tainty of a given input by searching in the latent
space of an auxiliary deep generative model (DGM),
identifying a single change to the input such that
the model becomes more certain in its prediction.
However, there are limitations to CLUE, including
the lack of a framework to deal with a potential di-
verse set of plausible explanations, despite propos-
ing methods to generate them. CLUE introduces a
latent variable DGM with decoder µθ(x|z) and en-
coder µϕ(z|x). H refers to any differentiable uncer-
tainty estimate of a prediction y. CLUE minimises:
L(z) = H (y|µθ(x|z))+d (µθ(x|z), x0) to yield xCLUE =
µθ (x|zCLUE) where zCLUE = argminz L(z). We pro-
pose δ-CLUE, ∇-CLUE and GLAM-CLUE, full de-
tails of which can be found in the paper.

Figure 1: Conceptual colour map of objective function L(z) with z0 located in high cost region. White circles indicate explanations
found. Left: Gradient descent to region of low cost [1]. Training points in colour. Left Centre: Gradient descent constrained to
δ-ball. Diverse starting points yield diverse local minima, albeit with many redundant solutions. Right Centre: Direct optimisation for
diversity (∇-CLUE). Right: Efficient mappings without gradient descent- each mapping applies to groups of inputs (GLAM-CLUE).

DIVerse CLUE

Our method δ-CLUE introduces a way of generat-
ing a set of CLUEs by restricting the search in la-
tent space to a ball of radius δ and by randomly
initialising within this ball. However, many CLUEs
found therein are redundant. We introduce metrics
D (detailed in Table 1) to measure the diversity in
sets of CLUEs such that we can optimise for it di-
rectly: we term this DIVerse CLUE (∇-CLUE). By
optimising simultaneously over k counterfactuals,we
minimise L(z1, ..., zk) = −λDD(z1, ..., zk) + 1

k

k∑
i=1

L(zi)
where L(zi) = H (y|µθ(x|zi)) + d (µθ(x|zi), x0), to
yield XCLUE = µθ (X|ZCLUE) where ZCLUE =
argmin
z1,...,zk

= L(z1, ..., zk). Note that we apply the diver-
sity function in the latent space z; it could equally
be applied in input or prediction space.
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Table 1: Diversity metrics D with arbitrary distance metric d.

Figure 2: Effect of λD on diversity. DPP, APD and Coverage
metrics evaluated on one set of k = 10 ∇-CLUEs (D = DPP).

GLobal AMortised CLUE

We desire a computationally efficient method that
only requires a finite portion of the dataset from
which global properties of uncertainty can be learnt,
in the hope that we could apply these properties
to unseen test data with a high degree of relia-
bility. We therefore propose GLobal AMortised
CLUE (GLAM-CLUE), which achieves such levels of

Figure 3: GLAM-CLUE vs baselines
when mapping uncertain 7s to certain
7s in MNIST. Total costs H + λxd.

reliability with con-
siderable speedups.
Summarising global
properties of un-
certainty can also
be important in
identifying areas in
which the model
does not perform
as expected or the
training data is
potentially sparse.

High certainty points are taken from the train-
ing data to learn such mappings (GLAM 1), but
we demonstrate improvements by instead using
CLUEs generated from uncertain points in the train-
ing data (GLAM 2). At inference time, GLAM-
CLUE performs significantly faster than CLUE
by average CPU time (Table 2). For all uncer-
tain 7s in MNIST, CLUE required 220 seconds to

Input DBM Latent DBM Input NN
0.0306 0.0262 0.0236

Latent NN GLAM-CLUE CLUE
0.0245 0.0238 4.68

Table 2: Avg. CPU time in seconds to
compute one MNIST counterfactual.

converge; GLAM-
CLUE computed
in around 1 sec-
ond. While the
baseline schemes
achieve lower un-

certainties, they do so at the expense of moving fur-
ther from the original input (Figure 4), reducing the
chance of yielding an actionable suggestion.

Figure 4: Comparison of explanations for an uncertain input
(left) by the baselines, GLAM-CLUE, and CLUE. H is un-
certainty, d is input space distance, ρ is latent space distance.
Low H in baselines have unrealistically high d from the input.

Overall, we show that δ-CLUE, ∇-CLUE pro-
vide richer summaries for local explanations, whilst
GLAM-CLUE address the seldom tackled problem
of global counterfactuals.
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