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Abstract

Counterfactual explanations (CEs) have been widely stud-
ied in explainability, though the major shortcoming asso-
ciated with these methods, is their inability to provide ex-
planations beyond the instance-level. While many works
touch upon the notion of a global explanation, typically
suggesting to aggregate masses of local explanations, few
provide frameworks that are both reliable and computa-
tionally tractable. We take this opportunity to propose
Global & Efficient Counterfactual Explanations (GLOBE-
CE), a flexible framework that tackles the reliability and
scalability issues associated with current state-of-the-art,
particularly on higher dimensional datasets and in the pres-
ence of continuous features. Furthermore, we provide a
unique mathematical analysis of categorical feature trans-
lations, utilising it in our method. Experimental evaluation
demonstrates improved performance across multiple met-
rics (e.g., speed, reliability).

Introduction

Counterfactual explanations (CEs) in machine
learning provide valuable insights into model deci-
sions, but their local focus can limit understand-
ing of global model biases. We seek to address this
in the context of global counterfactual explanations

(GCEs). We define a GCE to be a global direction

along which a group of inputs may travel to alter

their predictions. Our contributions are as follows:

e We propose a framework that permits GCEs to
have variable magnitudes while preserving a fixed
translation direction, mitigating the commonly
accepted trade-off between coverage and cost.

e We prove that arbitrary translations on one-hot
encodings can be expressed using If/Then rules.
To the best of our knowledge, this is the first work
that addresses mathematically the direct addition
of translation vectors to one-hot encodings.

e We demonstrate that GLOBE-CE outperforms
competing methods in coverage, cost, and
runtime (executing orders of magnitude faster
across 4 benchmark datasets and 3 model types).
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Figure 1: Left: Prior work assumes GCEs to be fixed transla-
tions/rules. The resulting trade-off between coverage and av-
erage cost was discussed in [1]. Right: We argue that a fixed
direction, variable magnitude set-up can greatly improve perfor-
mance while retaining interpretability. Each figure demonstrates

how one type of GCE works to transfer points from red to blue.

The GLOBE-CE Framework

We propose a novel and interpretable GCE repre-
sentation: scaled translation vectors, as depicted
in Figures 1 and 3. Using too few translations
limits the performance of previous methods, yet
large numbers of GCEs cannot easily be interpreted.
Figure 1 demonstrates conceptually how one can

achieve maximum coverage with a single translation
at comparably lower average costs to previous meth-
ods which do not utilise variable magnitudes (Fig-
ure 2 details why this is necessary for bias assess-

ment). The main contribution of the GLOBE-CE
framework lies in the notion of scaling magnitudes.

Negatively Predicted Inputs Fixed Cost Sampling

Example Generation Algorithm G:
Randomly sampled direction at a fixed cost

Unknown Decision Boundary S & i
[0)
Unknown Recourse Per Input 00, o° 42% Coverage::o0. i
o : o
o : o
00 : 0o
i 0 ; i 0
00 O ' 00 O
3 o  84% Coverage _ B o
@ ol o OF O b Lo G e G
oiigiigiieiisi? oo 0 20
o 5010 o bR 50 o o0 O
g & 0Q. !
@G o Q.--© "
e FHISE ek o Hi e R
S o 18% Coverage & Piilo
O (o) o @)
o o
o (o] o o (o) o (o) (0}
) Q o o
o 00 o 00 2
o L 0% Coverage

'"Harvard University, US

2

Sub-Optimal Cost Sub-Optimal Coverage

7 S [
1 ’f \‘ i \‘
) B3 A r
0 ==~ feeul
- ]
© : / T
af 1 X N/ p /
- h L' [
-~ / - / i~
o T : \ 3 <./ /
- I !
-....__-4 ] "“r.‘_ [
=z ~~a 1 !
] / I I
1 / 1 !
\ 7 \
\ V4 A\ |
S’ M
A PN N
2 * - /. \\ A l" \\
~~~~~ / 1 4 A / \
""'f-..._ I i Y | I
~ - ! I’ T~ 1
| / I /
)] & / } ! /
0] \ f’_"‘\ II/’-
o o Y- \ 4 771
S~ ! | *o_ ! / \
- I -4 |
'f"‘--.. ] I / ,'
| / ! /
1 / ' /
\ 7 \
A\ s \ !

Figure 2: Common pitfalls with unreliable recourse bias assess-
ment for GCEs A;, B; ({5 distance represents cost). Conceptual
situations of bias/no bias vs sub-optimal cost/coverage. Light
dotted lines are all inputs in subgroup A or B; dark dotted lines
are inputs in the subgroup for which the respective GCEs apply.

Recourse Bias Assessment

In the absence of minimum cost recourses, biases
may be detected where not present (A;, B;) or not
detected where present (A, By). Similarly, without
sufficient coverage, the same phenomena may occur
(A3, B3 and Ay, By, respectively). The further these
metrics stray from optimal, the less likely any po-
tential subgroup comparisons are ot being reliable.
We argue that maximising reliability thus amounts
to maximising coverage while minimising cost. Our
experiments evaluate performance along these two
dimensions, as well as efficiency (Table 1).
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Figure 3: The GLOBE-CE framework for an example generation algorithm . Cost is /5 distance. Left: Negative predictions, X .

Left Center: We sample translations at a fixed cost, computing the coverage of each translation. Right Center: The translation

with highest coverage is selected. Right: We scale 0 per input, returning the scalar value required for each input.

Table 1: Evaluating the reliability (coverage/cost) and efficiency of
GLOBE-CE against AReS |2]|. Highlighted in red are GCEs that a) achieve
below 10% coverage or b) require computation time in excess of 10,000 sec-

onds (/23 hours). Best metrics are shown in bold. Fast AReS includes our
AReS optimisations; dGLOBE-CE uses d = 3 GCE directions.

Models Algorithms Default Credit HELOC
Cov. Cost Time Cov. Cost Time

AReS 7.22% 1.0  7984s |5.4% 1.0 9999s
DNN Fast AReS 9% 4.2 3735 152% 5.5  109.1s
GLOBE-CE  98.5% 1.3 3.6s 93% 4.3 4.66s
dGLOBE-CE 100% 1.1 7.86s |195% 3.8 5.46s
AReS 11% 1.0 9999s |1.7% 1.0 9999s
CR Fast AReS  93% 2.3 29.97s 28% 2.1 93.58s
GLOBE-CE 96% 1.1 2.94s 58% 24 4.7s
dGLOBE-CE 100% 0.7 6.35s  80% 24 5.6s
AReS 31% 1.2 9999s [4.8% 1.0 9999s
IR Fast AReS  99% 2.1 1782s/92% 1.6 127.3s
GLOBE-CE 100% 1.0 3.42s 100% 0.5 3.11s
dGLOBE-CE 100% 1.0 7.21s |1100% 0.5 3.85s

GLOBE-CE demonstrates consistent improvement
across various models and datasets, while operat-
ing orders of magnitudes faster than existing meth-
ods. AReS can improve coverage over long dura-
tions, though this is impractical for relatively simple
datasets. Full results, user studies, and translations
for categorical features are included in the main text.

Conclusion

We introduce GLOBE-CE, a Global Countertactual
Explanation (GCE) framework that outperforms ex-
isting methods by relaxing the objective to permit
variable magnitudes per direction. We encourage

further research in the underexplored area ot GCEs.
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