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Abstract
Counterfactual explanations have been widely studied in
explainability, with a range of application dependent meth-
ods emerging in fairness, recourse and model understand-
ing. However, the major shortcoming associated with these
methods is an inability to yield explanations beyond a local
level. While some works touch upon the notion of a global
explanation, typically suggesting to aggregate masses of lo-
cal explanations in the hope of ascertaining global proper-
ties, few provide frameworks that are reliable or computa-
tionally tractable. Meanwhile, practitioners are requesting
efficient and interactive explainability tools. We investi-
gate existing global methods, implementing and improving
Actionable Recourse Summaries (AReS), the only known
global counterfactual explanation framework for recourse.

Investigations: Existing Methods

Counterfactual explanations (CEs) identify input
perturbations that result in desired predictions from
machine learning (ML) models. A key benefit of
these explanations is their ability to offer recourse
to affected individuals in certain scenarios (e.g., au-
tomated credit decisioning). However, the research
efforts so far have largely centred around local anal-
ysis, generating explanations for individual inputs.
Such analyses can help vet model behaviour at an
instance-level, though it is seldom obvious if the in-
sights gained therein would generalise globally.

Implementations: AReS

[1] investigates this problem, proposing Actionable
Recourse Summaries (AReS), a framework that con-
structs global counterfactual explanations (GCEs).
AReS adopts an original, interpretable structure of
triples of the form If/If/Then conditions, pictured
in Figure 1, Left. However, there exist shortcomings
that limit its real-world use. Specifically, we find
that AReS is a) computationally expensive
and b) sensitive to continuous features. We
propose amendments to the algorithm and demon-
strate that these lead to significant performance im-
provements on two benchmarked financial datasets.

Figure 1: Workflow for our AReS implementation (without improvements). SD and RL are assigned to the same set generated by
apriori. SD × RL2 is iterated over to compute valid triples (If/If/Then conditions) for the ground set V (Stage 1). Each item in
V is evaluated (Stage 2), and the optimisation procedure in [2] is applied (Stage 3), returning the smaller two level recourse set, R.

Improvements: Stage 1

RLRLRL-Reduction Iterating over SD×RL2 is waste-
ful, as many items in RL will never form valid “If-
Then” conditions. We iterate instead over RL and
remove items that contain a feature combination
that only occurs once, yielding a reduced RL.
Then-Generation (qqq) Instead of searching
SD × RL2 for triples, we search SD × RL for If
conditions, and re-apply apriori, with threshold q,
on a filtered dataset to generate Then conditions.

Figure 2: Stage 1 speedups: size of ground set vs time.

Improvements: Stage 2

VVV -Reduction (rrr, r′r′r′) We propose to evaluate a
fixed number of triples and form a new ground set by

Figure 3: Redundancy in V .

either adding each new
triple, or by only adding
triples that increase the
accuracy of the new set
(i.e. vertical blue steps in
Figure 3), which we de-
note r and r′ respectively.

Figure 4: Stage 2 speedups: ground set acc(V ) vs time.

Improvements: Stage 3

VVV -Selection (sss) We achieve speedups by further
shrinking the ground set pre-optimisation, by sort-
ing the ground set by recourse accuracy (already cal-
culated), and select the s highest-performing triples.
If s = r (or s = r′) then no sorting occurs.

Figure 5: Stage 3 speedups: final set acc(R) vs time.

Experimental Results

In Stage 1, we demonstrate that RL-Reduction is
capable of generating an equivalent ground set V
orders of magnitude faster than the original method,

and Then Generation also constructs (different)
ground sets rapidly (Figure 2). In Stage 2, the sat-
uration of ground set performance after only 1 to 2
percent of full evaluation (Figure 3), causes shrink-
ing (r = 5000) to perform significantly better than
full evaluation, and Then Generation also erases
many of the limitations surrounding continuous fea-
tures (Figure 4). In Stage 3, we finally observe vast
speedups, owing to the generation of very small yet
high-performing ground sets: r, r′ and s restrict the
size of V yet retain a near-optimal V (Figure 5).

Conclusion

This work studies the current state of global counter-
factual explanations (GCEs), and addresses in de-
tail the scalability issues in the recently proposed
AReS framework [1]. We propose improvements to
the AReS framework that speed up the generation
of GCEs by orders of magnitude, also witnessing sig-
nificant accuracy improvements on continuous data.
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